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Abstract

This paper investigates an evolutional type inverse problem of determining an
unknown heat source function in heat conduction equations when the solution
is known in a discrete point set. Being different from other ordinary inverse
source problems which often rely on only one variable, the unknown coefficient
in this paper depends not only on the space variable x, but also on time t. Two
regularization strategies which are called the time semi-discrete scheme (TSDS)
and the integral reconstruction scheme (IRS), respectively, are proposed to deal
with such a problem. By the TSDS the inverse problem is transformed into
a sequence of stationary inverse problems and the unknown heat source is
reconstructed layer by layer, while the IRS is to recover the source function
from the situation as a whole. Both theoretical and numerical studies are
provided. Two numerical algorithms on the basis of the Landweber iteration
are designed, and some typical numerical experiments are performed in this
paper. The numerical results show that the proposed methods are stable and
the unknown heat source is recovered very well.

PACS numbers: 44.05.+e, 44.10.+i
Mathematics Subject Classification: 35R30, 49J20

1. Introduction

The inverse heat source problems deal with the determination of the strength of the heat source
in analysis such as the internal energy source, or the quantity of the energy generation in a
computer chip, in a microwave heating process or in a chemical reaction process, etc.
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In this paper, we study an inverse problem of reconstructing an unknown heat source
function in parabolic equations on the basis of measurements of temperatures specified at
some internal points. The problem can be stated in the following form:

Problem P. Consider an initial-boundary value problem of the heat conduction equation
as follows:⎧⎪⎨
⎪⎩

ut − a(x)uxx + b(x)ux + c(x)u = f (x, t), (x, t) ∈ Q = (0, l) × (0, T ]

u(0, t) = u(l, t) = 0, t ∈ (0, T ]

u(x, 0) = φ(x), x ∈ (0, l)

, (1.1)

where a(x), b(x), c(x) and φ(x) are given smooth functions on interval (0, l) and f (x, t) is
an unknown right-hand side in (1.1). Assume that an additional condition is given as follows:

u(xj , tn) = g(xj , tn), (xj , tn) ∈ Q, j = 1, 2, . . . , J ; n = 1, 2, . . . , N, (1.2)

where g(x, t) is a known function which satisfies the homogeneous Dirichlet boundary
condition, and J,N are two given constants. Determine the functions u and f satisfying
(1.1)–(1.2).

The mathematical model (1.1)–(1.2) arises in various physical and engineering settings,
e.g., in hydrology, material science, heat transfer and transport problems (see [1, 2, 19, 24]). If
the temperature data u(x, t) are given exactly in the whole domain Q, i.e., the extra condition
(1.2) is given as follows:

u(x, t) = g(x, t), (x, t) ∈ Q, (1.3)

then the unknown source function f (x, t) can be derived directly from the following formula:

f = gt − agxx + bgx + cg. (1.4)

However, this is just an ideal case. In practice, we shall consider inaccurate input data, e.g.,
the extra condition (1.2) is given as

u(xj , tn) ≈ g(xj , tn), (xj , tn) ∈ Q (1.5)

or

u(xj , tn) = gδ(xj , tn), (xj , tn) ∈ Q, (1.6)

where δ is the upper bound for the noise level. Note that, to get f (x, t) from g(x, t) by (1.4),
one has to compute the numerical derivatives of g(x, t) with respect to x and t, particularly the
second derivative with respect to x. Therefore, the inverse problem P is ill-posed in the sense
of Hadamard (see [9, 13, 15, 20]). Moreover, the inverse problem P is under-determined. In
fact, it is not adequate for the extra condition (1.2) to determine the unknown heat source,
namely, that one cannot identify the unknown coefficient f (x, t) uniquely and stably by using
(1.2). Since the discrete form (1.6) is not convenient for analysis, we assume in this paper
that, without loss of generality, the overspecified observation is given as

u(x, t) = gδ(x, t), (x, t) ∈ Q, (1.7)

where gδ(x, t) is a continuous function which is obtained from (1.6) by the interpolation and
smoothing technique. It can easily be seen that there is no evident difference between the
two forms (1.6) and (1.7), because they all contain errors and, if necessary, it is natural to
transform (1.6) into (1.7).

Inverse source coefficient problems for parabolic equations are well studied in the literature
(see, for instance, [3–6, 14, 21, 23]). In [3], the inverse problem of identifying the source
coefficient f (t) in a 1D heat equation

∂u

∂t
− ∂2u

∂x2
= f (t), (x, t) ∈ Q

2



J. Phys. A: Math. Theor. 42 (2009) 365203 L Yang et al

from a solution specified at internal points has been studied carefully. The reconstruction of
the source term f (x, t) = λ(t)η(x), where λ(t) is the unknown coefficient to be determined,
has been discussed in [21]. In [14], the inverse problem of identifying the source coefficient
f (x) in the following heat equation

ut − �u = f (x), (x, t) ∈ Q

from the final overspecified data u(x, T ) has been studied carefully by using the boundary
element method. In [4], the author considered the determination of f (x) by the spectral theory
from the overspecified boundary data. For the space- and time-dependent case f = f (x, t),
a numerical algorithm based on the mollification method is proposed in [23] to obtain the
numerical solution.

In this paper, we use an optimal control framework (see [7, 8, 22]) to seek the stable
numerical solution of problem P. Such a problem is a natural extension of that in [14]. The
unknown coefficient in [14] is purely space dependent, while in this paper it depends not only
on the space variable x, but also on time t, which may occur in the case that the property of
heat source varies with space and time.

We propose two numerical methods to deal with problem P.
The first one comes from the idea in [7], where an evolutional inverse heat conduction

problem has been resolved completely. We solve problem P by using the so-called time
semi-discrete scheme (TSDS), i.e., we find f (x, tn) step by step, where tn = nτ , and
τ = T

N
, n = 1, 2, . . . , N . In fact, if f (x, t0), f (x, t1), . . . , f (x, tn−1) have been defined,

then from the given extra condition (1.7)

u(x, tn) = gδ(x, tn),

we find f (x, tn) such that

Jn(f (·, tn)) = inf
f ∈A

Jn(f ),

where A is an appropriate admissible set and Jn is a control functional. Therefore, we obtain
an approximate function f̃ (x, t) defined as follows:

f̃ (x, t) =
{

f (x, tn), t = tn,

linear, tn−1 � t � tn.

In the sense of numerical computation, f̃ (x, t) can be taken as an approximate solution of
f (x, t) provided that τ is small enough.

By the TSDS, the original evolutional type inverse source problem is transformed into
N inverse source problems which are purely spatially dependent. In other words, to gain the
numerical solution of the original problem, we shall treat N stationary inverse source problems.
Undoubtedly, this method is stable since the stability is based on those of the stationary cases
which have been proved in [14]. Noticing that such a method is first proposed to deal with
nonlinear inverse problems, we feel uncertain whether we should use it for linear inverse
problems. However, it can easily be seen from (1.1) that as φ = 0 the extra condition g is
linearly dependent on the unknown source f , i.e., the problem P is indeed a linear inverse
problem (if φ �= 0, we can use a variable transformation to remove it). It is well known that the
Landweber iteration method (see [15]) is a classical tool to deal with linear inverse problems.
Moreover, for the Landweber iteration it is not required to construct the regularization term or
to choose the regularization parameter. In fact, the number of Landweber iterations is indeed
the regularization parameter for the iterative scheme, while the stopping rule for Landweber
plays the role of the parameter selection rule for Tikhonov. In general, it is rather difficult to
construct an appropriate regularization term to obtain the stability for evolutional type inverse

3
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problems (see [7]). Therefore, the first advantage of the Landweber iteration suggests to us,
in a sense, that we may reconstruct the unknown source on the whole.

Based on the analysis above, we consider another kind of numerical method to recover
the unknown coefficient f (x, t) from gδ(x, t) directly, i.e., find f̄ (x, t) such that

J (f̄ ) = inf
f ∈B

J (f ),

where B is an appropriate admissible set. Compared with the first numerical method, the
second one seems more natural and can be applied for more extensive input data. It seems that
this new idea can also be applied to the nonlinear inverse problem which has been discussed in
[7], i.e., the determination of the radiative coefficient p(x, t) in the following heat conduction
equation:

ut − �u + p(x, t)u = 0, (x, t) ∈ Q,

from the overspecified data u(x, t) = gδ(x, t), (x, t) ∈ Q. We may regard the low-order term
pu as an unknown heat source f , i.e., f = pu, and recover the source f by the method and
then get p = −f/gδ . Here we shall require gδ(x, t) �= 0, (x, t) ∈ Q, while for the case that
gδ(x, t) may equal zero for some point (x, t) ∈ Q, this method is no longer useful and we
shall turn to the TSDS.

This paper is organized as follows. The time semi-discrete scheme is introduced in
section 2. In section 3, the integral reconstruction scheme is proposed and the corresponding
convergence is proved. Numerical treatments for PDEs (3.13) and (3.14) are given in section 4.
Some numerical experiments and results are presented in section 5. Section 6 ends this paper
with concluding remarks.

2. Time semi-discrete scheme

Assume that a(x), b(x), c(x) and φ(x) satisfy

a(x), b(x), c(x) ∈ Cα(0, l), a(x) � a0 > 0, c(x) � 0, φ(x) ∈ C2,α(0, l), (2.1)

where α > 0 and a0 is a positive constant, and φ(x) satisfies the homogeneous Dirichlet
boundary condition.

The well-known Schauder’s theory for parabolic equations (see [10, 16]) guarantees
that, for any given coefficient f (x, t) ∈ Cα, α

2 (Q), there exists a unique solution u(x, t) ∈
C2+α,1+ α

2 (Q̄) to equation (1.1).
In this paper, we would not like to discuss the existence and uniqueness of the solution

for the inverse problem P. Note that gδ(x, t), which is obtained from (1.2) or (1.6) by the
interpolation and smoothing technique, even if has sufficient smoothness, e.g., gδ ∈ C2,1(Q),
is not unique and neither is f (x, t). With regard to the existence, it can easily be seen from
(1.4) that for general input data gδ ∈ L2(Q) the inverse problem has no solution in the sense of
classical theory at all. Therefore, it is not so interesting to study these problems. The central
issue of this paper is to illustrate the stability of the solution.

To reconstruct the unknown coefficient, we introduce the following time semi-discrete
optimal control problem.

Let

0 = t0 < t1 < t2 < · · · < tN = T

be a partition of interval [0, T ] with tn = nτ and τ = T
N

.
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Let

A = {f (x)||f (x)| � M,f ∈ H 1(0, l)}
be the admissible set, where M is a given positive constant.

Beginning with a given function f0 ∈ A, we consider the following optimal control
problem:

Problem Pn: Assume that f0, f1, . . . , fn−1 ∈ A are known. Find fn ∈ A such that

Jn(fn) = min
f ∈A

Jn(f ), (2.2)

where

Jn(f ) = 1
2‖u(·, tn; f ) − gδ(·, tn)‖2

L2(0,l), (2.3)

u(x, t; f ) is the solution of (1.1) in [0, tn] corresponding to the coefficient

f̃ =
{

t−tn−1

τ
f (x) + tn−t

τ
fn−1(x), tn−1 � t � tn,

t−tk−1

τ
fk(x) + tk−t

τ
fk−1(x), tk−1 � t � tk, 1 � k � n − 1.

(2.4)

With the transformation above, problem P is transformed into a sequence of inverse
problems Pn, n = 1, 2, . . . , N , which are similar to that in [14], i.e., the unknown coefficient
is purely space dependent.

The procedure for the stable reconstruction of the solution u and f can be stated as
follows:

Assume that f1, f2, . . . , fn−1 have been reconstructed.

Step 1. Choose an initial value of iteration f = f 0(x). For simplicity, we can choose
f 0(x) = 0, x ∈ (0, l).

Step 2. Solve the following initial-boundary value problem:⎧⎪⎨
⎪⎩

ut − a(x)uxx + b(x)ux + c(x)u = f̃ (x, t), (x, t) ∈ (0, l) × (0, tn]

u(0, t) = u(l, t) = 0,

u(x, 0) = φ(x),

(2.5)

to obtain the solution u0(x, tn), where f̃ (x, t) is as defined in (2.4) with f = f 0.

Step 3. Solve the adjoint problem of (2.5)⎧⎪⎨
⎪⎩

vt − (av)xx − (bv)x + cv = u0(·, tn) − gδ(·, tn), (x, t) ∈ (0, l) × (0, tn]

v(0, t) = v(l, t) = 0,

v(x, 0) = 0,

(2.6)

to obtain the solution v0(x, tn).

Step 4. Let

f 1(x) = f 0(x) − αv0(x, tn),

where α > 0, and let u1 be the solution of (2.5) with f = f 1.

Step 5. Let δn be the nth layer noise level, i.e.,

‖gδ(·, tn) − g(·, tn)‖L2(0,l) � δn,

where g(x, t) is the exact data.

If

‖u1(·, tn) − gδ(·, tn)‖ � δn,

5
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then stop the iteration scheme and take f = f 1;

If

‖u1(·, tn) − gδ(·, tn)‖ > δn,

then go to Step 2. Let f 1(x) be a new initial value of iteration and go on computing by the
induction principle.

By continuing the procedure above, we can obtain f0, f1, . . . , fN and the approximate
solution f̃ (x, t).

Remark 2.1. It can easily be seen that the essence of the time semi-discrete scheme is to
reconstruct the unknown heat source function layer by layer. The iterative algorithm above
is indeed the Landweber–Fridman iteration proposed in [14], where an inverse problem of
identifying a stationary source term has been studied carefully. Therefore, the algorithm is
stable on every time layer t = tn, n = 1, 2, . . . , N. In the sense of theoretical analysis, it is
natural to consider the smoothness and the stability of the approximate solution f̃ (x, t) in
(2.4) as τ → 0 after f1, f2, . . . , fN have been reconstructed (see [7]). Such a problem also
exists in the numerical computation. Because for a fixed time step size τ , even if

‖fi(x) − f̄ i(x)‖L2[0,l] → 0, i = 1, 2, . . . , N,

where f̄ i(x) is the exact solution on every time layer, one still cannot deduce that

‖f̃ (x, t) − f̄ (x, t)‖L2(Q) → 0.

However, if some a priori information of the solution is known, e.g., f̄ (x, t) ∈ C(Q), then
f̃ (x, t) can be taken as a ‘good’ approximate solution of f̄ (x, t) as τ is relatively small.

3. Integral reconstruction scheme

Undoubtedly, the time semi-discrete scheme mentioned above is an effective method of dealing
with the evolutional type inverse problem. However, to reconstruct the unknown source term
on every time layer, one has to apply the iteration method to deal with a stationary inverse
source problem. For linear inverse problems, we may have some other method. Another kind
of natural idea for problem P is to reconstruct the unknown heat source on the whole, which
is the so-called integral reconstruction scheme (IRS).

We introduce the following optimal control problem:

Problem P̃: Find f̄ (x, t) ∈ B such that

J (f̄ ) = min
f ∈B

J (f ), (3.1)

where

J (f ) = 1

2

∫ T

0

∫ l

0
|u(x, t; f ) − gδ(x, t)|2 dx dt, (3.2)

B = {f (x, t)||f | � M,f ∈ C1([0, T ], L2(0, l))}, (3.3)

u(x, t; f ) is the solution of (1.1) for a given coefficient f (x, t) ∈ B.
Let

L u = −a(x)uxx + b(x)ux + c(x)u

and

D(L ) = {
u|u ∈ H 1

0 (0, l),L u ∈ L2(0, l)
}
.
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Theorem 3.1. (see [11]) Assume that

a(x), b(x) ∈ C1[0, l], c(x) ∈ C[0, l], a(x) � a0 > 0

and

φ(x) ∈ D(L ), f (x, t) ∈ B.

Then the operator −L generates a contraction semi-group {S(t)}t∈R+ in L2(0, l) and there
exists a unique solution u(x, t) ∈ C1([0, T ], L2(0, l))

⋂
C([0, T ],D(L )) to equation (1.1).

Furthermore, the solution can be expressed as

u = S(t)φ + K(t)f, (3.4)

where K(t) is a linear operator defined as

K(t)f =
∫ t

0
S(t − τ)f dτ. (3.5)

Using the properties of the contraction semi-group in combination with [17], we have the
following lemma:

Lemma 3.2. Suppose that φ ∈ L2(0, l) and f ∈ L2(Q). Then equation (1.1) has a unique
solution u ∈ L2

(
[0, T ],H 1

0 (0, l)
) ⋂

C
(
[0, T ],H 1

0 (0, l)
)

in the distributional sense which
satisfies

‖u‖L2([0,T ],H 1
0 (0,l)) � C(‖f ‖L2(Q) + ‖φ‖L2(0,l)). (3.6)

From theorem 3.1, we can see that finding a solution to the inverse problem is equivalent
to solving the following operator equation:

K(t)f = gδ − S(t)φ. (3.7)

We use the Landweber iteration method (see [9, 15]) to obtain the numerical solution of (3.7).
In fact, such a method is the steepest decent algorithm for finding the minimizer of (3.2). Note
that (3.7) can be rewritten as

f = (I − αK∗K)f + αK∗(gδ − S(t)φ), (3.8)

where K∗ is the adjoint operator of K, and α > 0 is the step size. Then we use the iteration
method to solve (3.8), i.e.,

f 0 = 0,

f m = (I − αK∗K)f m−1 + αK∗(gδ − S(t)φ), m = 1, 2, 3, . . . . (3.9)

From (3.4) and (3.9) we have

f m = f m−1 − αK∗(Kf m−1 − (gδ − S(t)φ))

= f m−1 − αK∗(um−1 − gδ), (3.10)

where um−1 is the solution of (1.1) with f = f m−1.

Lemma 3.3. For any given ψ ∈ C1([0, T ], L2(0, l)), let v = K∗ψ . Then v satisfies the
following equation:⎧⎪⎨

⎪⎩
−vt − (av)xx − (bv)x + cv = ψ, (x, t) ∈ Q

v|x=0 = v|x=l = 0,

v|t=T = 0.

(3.11)

7
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Proof. By the definition of K, we have

K : C1([0, T ], L2(0, l)) 	→ C1([0, T ], L2(0, l))
⋂

C([0, T ],D), f 	→ u(f ),

where u(f ) is the solution of the following equation:⎧⎨
⎩

ut − auxx + bux + cu = f, (x, t) ∈ Q

u|x=0 = u|x=l = 0,

u|t=0 = 0.

(3.12)

Then from (3.11) and (3.12) we have∫ T

0

∫ l

0
(ψKf − f v) dx dt

=
∫ T

0

∫ l

0
[(−vt − (av)xx − (bv)x + cv)u − (ut − auxx + bux + cu)v] dx dt

= −
∫ 1

0
uv

∣∣∣∣
t=T

t=0

dx

= 0,

i.e.,

〈Kf,ψ〉 = 〈f, v〉.
By the definition of K∗, we have

v = K∗ψ.

This completes the proof of lemma 3.3. �

Based on (3.9), (3.10) and lemma 3.3, the procedure for the iteration algorithm can be
stated as follows:

Step 1. Choose an initial value of iteration f = f 0(x, t) ∈ L2(Q). For simplicity, we
can choose f 0(x, t) = 0, (x, t) ∈ Q.

Step 2. Solve the following initial-boundary value problem:⎧⎨
⎩

ut − auxx + bux + cu = f, (x, t) ∈ Q

u|x=0 = u|x=l = 0,

u|t=0 = φ(x),

(3.13)

to obtain the solution u0(x, t), where f = f 0.

Step 3. Solve the adjoint problem of (3.13)⎧⎨
⎩

−vt − (av)xx − (bv)x + cv = u0 − gδ, (x, t) ∈ Q

v|x=0 = v|x=l = 0,

v|t=T = 0,

(3.14)

to obtain the solution v0(x, t).

Step 4. Let

f 1 = f 0 − αv0,

where α > 0, and let u1 be the solution of (3.13) with f = f 1.

Step 5. Let δ be the noise level, i.e.,

‖gδ − g‖L2(Q) � δ,

8
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where g(x, t) is the exact input data.
If

‖u1 − gδ‖ � δ,

then stop the iteration scheme and take f = f 1;
Otherwise go to Step 2. Let f 1(x, t) be the new initial value of iteration and go on

computing by the induction principle.
If the input data g are a ‘real’ temperature distribution, i.e., g is the solution of

equation (1.1) with a given heat source f ∈ L2(Q), then we have the following convergence
results:

Theorem 3.4. Let φ ∈ L2(0, l) and let g ∈ L2
(
[0, T ],H 1

0 (0, l)
) ⋂

C
(
[0, T ],H 1

0 (0, l)
)

be the
input data. Assume that α satisfies 0 < α < 1/‖K‖2. Let uk be the kth approximation with
gδ replaced by g in the iterative procedure above. Then we have

lim
k→∞

‖uk − g‖L2([0,T ],H 1
0 (0,l)) = 0 (3.15)

for any initial guess f 0 ∈ L2(Q).

Proof. From theorem 3.1, lemma 3.3 and the iterative procedure given above, we have

f k+1 = f k − αvk

= f k − αK∗(uk − g)

= f k − αK∗(Kf k − (g − Sφ)).

From the assumption 0 < α < 1/‖K‖2 and the standard theory for the Landweber
iteration (see [9]), we have that the sequence f k converges to f in L2(Q). Then from
lemma 3.2 one can easily obtain that uk converges to g in L2

(
[0, T ],H 1

0 (0, l)
)
.

This completes the proof of theorem 3.4. �

4. Numerical schemes for PDEs (3.13) and (3.14)

In this paper, we use the finite difference method to solve the PDEs (3.13) and (3.14). Since
the explicit difference scheme is conditionally stable, the implicit scheme which is absolutely
stable is employed to obtain the numerical solution.

The numerical scheme for (3.13) is standard and is thus omitted. For the backward
parabolic equation (3.14), we make the following change in the variable:

τ = T − t.

Then (3.14) is transformed into the following forward parabolic equation:⎧⎨
⎩

vτ − (av)xx − (bv)x + cv = u0(·, T − τ) − gδ(·, T − τ), (x, t) ∈ Q,

v|x=0 = v|x=l = 0,

v|τ=0 = 0.

(4.1)

So the numerical method for (3.13) can also be applied to (4.1). It should be pointed
out that one must be very careful about the change of variable in (4.1), namely that after the
numerical solution of (4.1) has been obtained, the variable τ should be changed back into the
variable t, which is different from the numerical procedure of (2.6). Equation (3.14) can also
be solved without any change of variable.

For the sake of simplicity, we assume that

a = 1, b = c = 0,

9
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in (3.14). Assume that the domain Q = [0, l] × [0, T ] is divided into a J × N mesh with the
spatial step size h = l

J
in the x-direction and the time step size k = T

N
.

Grid points (xj , tn) are defined by

xj = jh, j = 0, 1, 2, . . . , J,

tn = nk, n = 0, 1, 2, . . . , N,

in which J and N are two integers. The notation vn
j is used for the finite difference

approximation of v(jh, nk).

Using the final condition

v(x, T ) = 0, 0 � x � l,

equation (3.14) is solved approximately, commencing with final values

vN
j = 0, j = 0, 1, 2, . . . , J, (4.2)

and boundary values

vn
0 = 0, n = 0, 1, 2, . . . , N − 1, (4.3)

vn
J = 0, n = 0, 1, 2, . . . , N − 1. (4.4)

The implicit difference scheme leads to the following difference equation for (3.14):

− vn+1
j − vn

j

k
− vn

j+1 − 2vn
j + vn

j−1

h2
= Fn

j , (4.5)

for 1 � j � J − 1, and 0 � n � N − 1, where

Fn
j = (u0 − gδ)nj .

This method is stable in maximum-norm without any restriction on k and h, and the
truncation error is O(k + h2).

Remark 4.1. To improve the precision, one may use the so-called Crank–Nicolson scheme to
replace the old one. In such a case, the difference equation can be written as

−vn+1
j − vn

j

k
− λ

2

[(
vn+1

j+1 − 2vn+1
j + vn+1

j−1

)
+

(
vn

j+1 − 2vn
j + vn

j−1

)] = 0,

whose truncation error is O(k2 + h2). However, we find that it is not necessary to do so
because the implicit scheme (4.5) is enough to meet the needs, as can be seen from the
following numerical experiments.

5. Numerical experiments and results

We have performed three numerical experiments to test the stability of our algorithm. In all
experiments, some basic parameters are

l = T = 1, a(x) ≡ 1, b(x) = c(x) ≡ 0, k = h = 0.01.

We use the symbol σ to denote the stopping parameter in the iteration procedure, i.e.,

σ = ‖u(x, t; f ) − gδ(x, t)‖L2(Q),

and the symbols E and E1 to denote the absolute and relative L2-norm error between the exact
solution f (x, t) to be identified and the numerically reconstructed solution f̃ (x, t), i.e.,

E = ‖f̃ (x, t) − f (x, t)‖L2(Q),

E1 = ‖f̃ (x, t) − f (x, t)‖L2(Q)/‖f (x, t)‖L2(Q).

10
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Figure 1. Reconstruction of the continuous heat source by the TSDS.

Example 1. In the first numerical experiment, we take

φ(x) = sin(πx), x ∈ [0, 1],

f (x, t) = (π2 − 1) exp(−t) sin(πx), (x, t) ∈ [0, 1] × [0, 1].

In this case, the direct problem (1.1) has the following analytical solution:

u(x, t) = exp(−t) sin(πx), (x, t) ∈ [0, 1] × [0, 1],

and thus the extra observation is given by

g(x, t) = u(x, t), (x, t) ∈ [0, 1] × [0, 1].

For the first kind of numerical method (TSDS), we know that the initial value f (x, 0) cannot
be recovered. So we take the initial value as the exact solution simply for convenience. The
exact solution and the reconstructed one are shown in figure 1, where the iteration parameter
is taken as α = 100. The initial guess is taken to be zero on every layer. Clearly, this
initial guess is not good at all, but the TSDS converges very stably and fast (the result shown
is obtained from the 100th iteration and the CPU time is 8.984 s) and the reconstruction
solution seems to be very satisfactory (the maximal error ‖f̃ − f ‖C((0,l)×(0,T )) is less than
8 × 10−3).

For the second kind of numerical method (IRS), we know that the terminal value f (x, T )

cannot be recovered, which can easily be seen from steps 3 and 4 of the algorithm. During
the iteration procedure, it always remains at zero. The reconstruction results are shown in
figure 2, where the iteration parameter is also taken as α = 100. We can see from this
figure that the unknown source function f (x, t) can be recovered very well (the maximal error
‖f̃ −f ‖C((0,l)×(0,T )) is less than 6×10−3). Moreover, the IRS converges faster than the TSDS
(the CPU time is 3.532 s).

If we apply the noisy data generated in the form

gδ(x, t) = g(x, t)[1 + δ × random(x)]

with δ = 5%, the reconstruction results obtained by the IRS are also satisfactory
(E = 0.2673, E1 = 0.0648); see figure 3. We can see from this figure that after 150 iterations
(denoted by k) the stopping parameter σ is 0.0050 which is much less than δ. The numerical
results obtained by the TSDS are similar to those of the IRS and thus are omitted. (To
save space, we only present the numerical results obtained by the IRS in the following test
examples.)
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Figure 2. Reconstruction of the continuous heat source by the IRS.
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Figure 3. Reconstruction of the continuous heat source with noisy data.

Remark 5.1. For the TSDS, the initial guess of every layer is taken as fn = 0, n = 1, 2, . . . , N.

But it is not essential to do so. When fn is to be computed, one may take fn−1 as a starting
value for the iterative procedure. We find that as α = 100, to obtain similar accuracy
(‖f̃ − f ‖C((0,l)×(0,T )) = 0.0068), the required CPU time is 5.7030 s which is still longer than
that of the IRS. However, when the value of α becomes larger, the CPU time becomes less.
As α = 10 000, the CPU time needed is 0.0460 s. This may be the most suitable value of
α. When 0 < α � 10 000, the bigger the α is the more quickly the algorithm converges.
The maximum of α can be taken to be 23 960, which is far bigger than that of the IRS (see
remark 5.2).

Example 2. In the second numerical experiment, we take

f (x, t) =
{

2(π2 − 1)x exp(−t), 0 � x � 0.5,

2(π2 − 1)(1 − x) exp(−t), 0.5 � x � 1,
(5.1)

and φ(x) is the same as that of the first experiment. It can easily be seen that f (x, t) is a
continuous rather than differentiable function. Being different from example 1, the direct
problem (1.1) has no analytical solution. So the observation data g(x, t) are given with the
numerical form, i.e.,

g(x, t) = u(x, t; f ),

where u(x, t; f ) is the numerical solution of (1.1) with the input source (5.1).
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Figure 4. Reconstruction of the heat source f (x, t) ∈ C0\C1(Q) by the IRS.
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Figure 5. Reconstruction of the heat source f (x, t) ∈ C0\C1(Q) with the noisy data.

Table 1. Numerical comparisons at some points (xj , tn) from exact data for example 2.

(j, n) f (25, n) f̃ (25, n) f (50, n) f̃ (50, n) f (75, n) f̃ (75, n)

n = 20 3.6309 3.6372 7.2618 7.0047 3.6309 3.6372
n = 50 2.6898 2.6945 5.3797 5.1892 2.6898 2.6945
n = 80 1.9927 1.9962 3.9854 3.8443 1.9927 1.9962

The exact solution together with the recovery one is shown in figure 4, and the numerical
results at some points are given in table 1, where the nodal number (j, n) corresponds to the
point

(xj , tn) = (jh, nk) ∈ Q,

while f (j, n) := f (xj , tn) and f̃ (j, n) := f̃ (xj , tn) represent the exact solution and the
inversion one, respectively. We can see that the cuspidal line of f (x, t) is recovered very well
after 5000 iterations (E = 0.1369, E1 = 0.0407). Here we take the initial value f (x, 0) as the
exact solution simply for the convenience of the reader’s comparison.

Then, we also consider the noisy data by taking δ = 1%, while the other parameters
are kept unchanged. The inversion performance is given in figure 5 and table 2. It
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Figure 6. Reconstruction of the discontinuous heat source by the IRS.

Table 2. Numerical comparisons at some points (xj , tn) from noisy data for example 2.

(j, n) f (25, n) f̃ (25, n) f (50, n) f̃ (50, n) f (75, n) f̃ (75, n)

n = 20 3.6309 3.5620 7.2618 6.8040 3.6309 3.6803
n = 50 2.6898 2.6678 5.3797 5.0779 2.6898 2.4812
n = 80 1.9927 2.0231 3.9854 3.8454 1.9927 1.9553

Table 3. Numerical comparisons at some points (xj , tn) from exact data for example 3.

(j, n) f (25, n) f̃ (25, n) f (50, n) f̃ (50, n) f (75, n) f̃ (75, n)

n = 20 0 −0.1494 7.2618 7.3160 0 −0.0250
n = 50 0 −0.1107 5.3797 5.4199 0 −0.0185
n = 80 0 −0.0820 3.9854 4.0150 0 −0.0137

can be seen that the reconstructed solution matches the exact one very satisfactorily
(E = 0.1744, E1 = 0.0518).

Example 3. In the third numerical experiment, we take

f (x, t) =
{

(π2 − 1) exp(−t), (x, t) ∈ [
1
3 , 2

3

] × [0, 1],

0, (x, t) ∈ Q
∖[

1
3 , 2

3

] × [0, 1],
(5.2)

and φ(x) is the same as that of the first experiment. The heat source f (x, t) is a discontinuous
function and thus the direct problem (1.1) has no analytical solution.

The exact solution and the recovery one are shown in figure 6, and the numerical results
at some points are given in table 3. We can see that the discontinuous property of f (x, t)

is recovered very well after 50 000 iterations (E = 0.5330, E1 = 0.1567). Noticing the
poor smoothness of f (x, t), we need many more iterations than in experiments 1 and 2.
Similarly, the reconstruction of f (x, t) from the noisy data gδ(x, t) is also performed, where
the noise level δ is also taken as 1%. The results are shown in figure 7 and table 4 (E =
0.7397, E1 = 0.2175).

Remark 5.2. From theorems 3.1 and 3.4 we know that the iterative procedure is convergent
for 0 < α � 1/‖K‖2, where ‖K‖ � 1. It should be mentioned that the regularization
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Figure 7. Reconstruction of the discontinuous heat source with the noisy data.

Table 4. Numerical comparisons at some points (xj , tn) from noisy data for example 3.

(j, n) f (25, n) f̃ (25, n) f (50, n) f̃ (50, n) f (75, n) f̃ (75, n)

n = 20 0 −0.4753 7.2618 8.1287 0 −0.6020
n = 50 0 −0.1931 5.3797 5.4015 0 −0.5035
n = 80 0 −0.0940 3.9854 3.9400 0 −0.0479

parameter α plays a major role in the numerical simulation of the inverse problem. During the
course of numerical computation, we find that the maximum of α can be taken as 210 and as
0 < α � 210, the bigger the α is, the more quickly the algorithm converges. If the parameter
exceeds this range, the iterative procedure will diverge.

Moreover, the initial guess f 0(x, t) is taken as zero in the numerical computation. If we
take f 0 as some other value, e.g., f 0 ≡ 1, (x, t) ∈ Q, then the unknown heat source can also
be recovered well in the internal part of the domain except for the two boundaries x = 0 and
x = 1.

6. Concluding remarks

In this paper, we solve the inverse problem P of recovering the heat source coefficient f (x, t)

in the following heat conduction equation:

ut − a(x)uxx + b(x)ux + c(x)u = f (x, t)

in an optimal control framework. Such a problem is a natural extension of that in [14]. Being
different from [14], the problem discussed in this paper contains two independent variables x
and t, which is often known as the evolutional inverse problem in mathematics. Motivated by
the idea in [7, 14], the time semi-discrete scheme (TSDS) is applied to recover the unknown
source layer by layer. For ordinary input data gδ ∈ C([0, T ], L2(0, l)), this method is an
efficient tool to deal with the inverse problem. The key ideology of such a method is to
transform the problem P into a sequence of stationary inverse source problems. When the
parameter α is taken as 10 000, the iterative algorithm of the TSDS converges very quickly.
Another kind of numerical method which is the so-called integral reconstruction scheme (IRS)
is also proposed in this paper. Compared with the TSDS, the IRS can be applied for more
extensive input data, but may need a few more computations. Both theoretical and numerical
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studies have been provided. Numerical experiments show that the two numerical algorithms
designed in this paper are stable, and the heat source f (x, t) is recovered very well.

Moreover, as mentioned in section 1, the inverse problem P is indeed a numerical
differential problem with noisy input data (see, e.g., [18, 12]). So this paper also provides a new
idea, in a sense, to deal with numerical differential problems with regard to the second-order
parabolic differential operator.
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